SANITATION BEST PRACTICES

Neil Bogart

Exec. Area Technical Support Coordinator

NA Food & Beverage

THE PERFECT SOLUTION DOESN'T EXIST

- No miracle in a drum
- No silver bullet

There are numerous factors that can affect your ability to efficiently clean and sanitize your facility

WHY IS SANITATION IMPORTANT?

MANY food safety problems are related to sanitation:

- Directly improper cleaning & sanitizing
- Indirectly practices which negate any sanitation program
 - Poor housekeeping
 - Poor employee practices
 - Poor equipment sanitary design
 - Poor equipment maintenance
 - Pest attraction & harborage

Some of this exists in every plant!

GOALS OF AN EFFECTIVE SANITATION PROGRAM

- Safety
 - Consumer
 - Employee
 - Reputation
- Quality
 - Fresh / wholesome
 - Consistent
 - Acceptable shelf life
 - Consumer acceptance
 - Sales / profits

- Sanitation is a fundamental expectation of GAPs and FSMA Produce Rule
- Could be considered a Prerequisite Program or Preventative Control per FSMA

OVERVIEW

Purpose, Process, and Payoff

Purpose: Understanding of general sanitation best practices

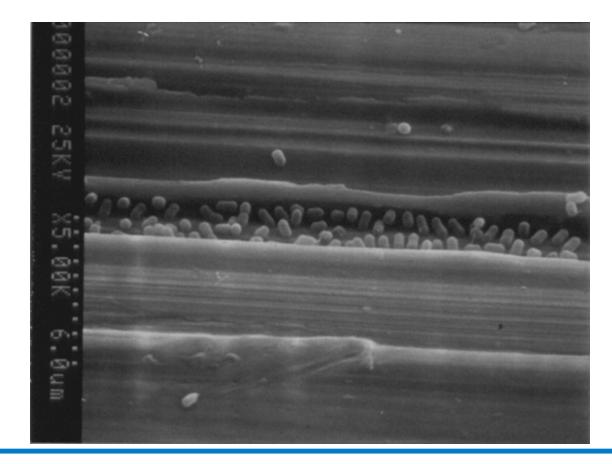
Process:

- 1. Understanding the enemy
- 2. Factors of Cleaning
- 3. Factors of Sanitizers
- 4. Environmental Cleaning
- 5. Equipment

Payoff: A better understanding of the general sanitation best practices and the desired goal of cleaning

UNDERSTANDING THE ENEMY

UNDERSTANDING THE ENEMY

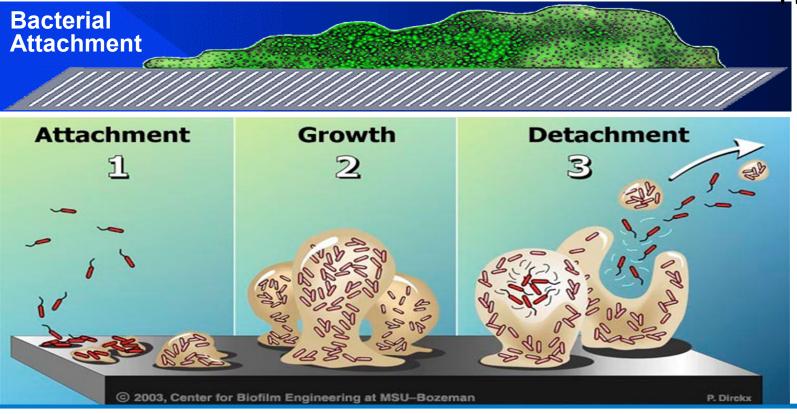

Bacteria

Electron microscope view of bacteria growing in a scratch on

stainless steel

Highlights Importance of:

- Chemistry;
- Temperature;
- Mechanical Action; and
- Time

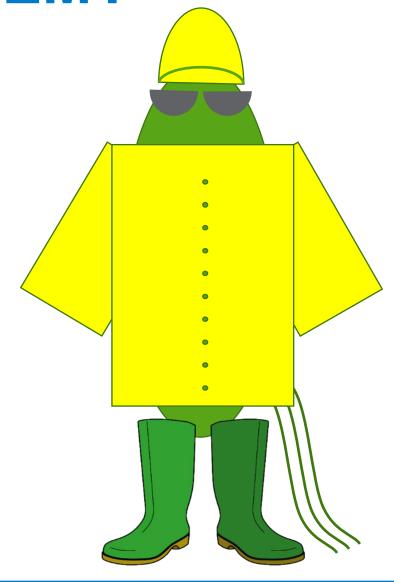

UNDERSTANDING THE ENEMY

Biofilm

A thin layer of growing microorganisms adhering to the surface of a structure which may be organic and/or inorganic, together with the polymers they secrete.

Nutrients and

Bacteria are trapped



UNDERSTANDING THE ENEMY

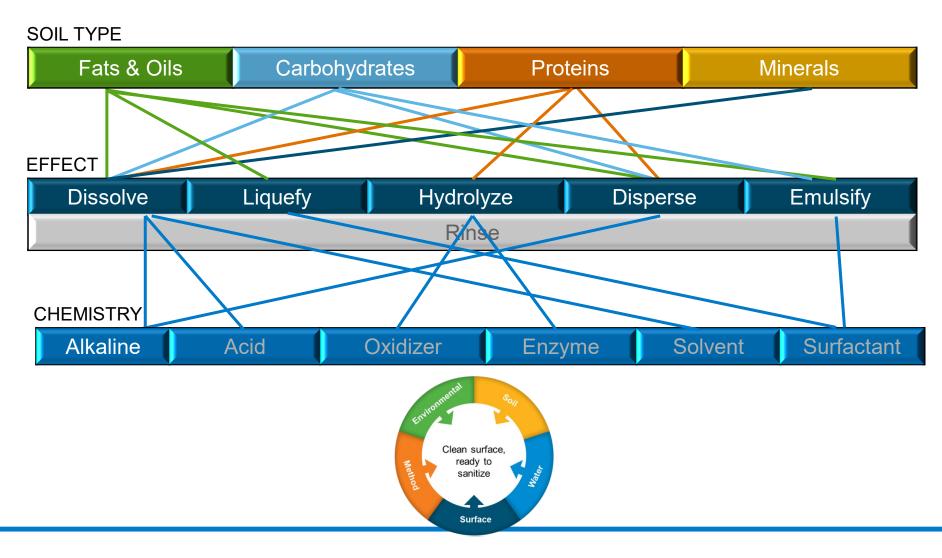
Biofilm

- Biofilm Architect Pseudomonas
- Biofilm is a bacteria's personal protection equipment!
- Protects from chemical exposure
 - Shields from chemical contact
 - Inactivates chemical compounds
- Helps resist physical removal
 - Aids in attachment
 - Unifies colony
- Insulates from heat exposure
- Protects from dehydration
- Helps bacteria remain viable

Understanding Processing Water

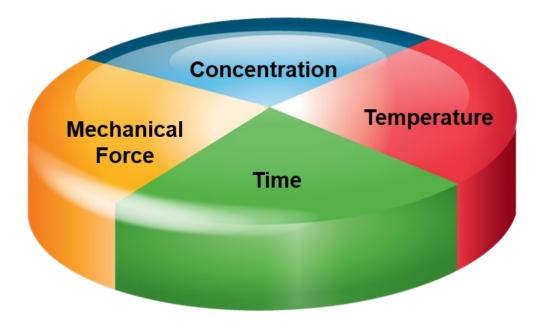
- 95 99.9% of the cleaning solution is water
- What is in it?
 - Water Hardness (Calcium, Magnesium and Carbonates)
 - pH
 - Iron
 - Chlorides
 - Silica

Understanding the Soil


Soil Basic Components

Fats & Oils	Carbohydrates	Proteins	Minerals
 Organic Soils Simple structure Generally easier to clean 		 Organic Soil More complex structure Difficult to clean 	 Found in water or food supply Can precipitate depending on temperature and other conditions Can react with detergent ingredients

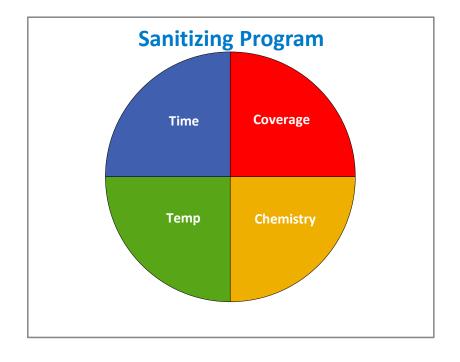
- Food processing soils are typically a mixture of one or more of the above
- Soil characteristics vary depending on factors such as processing temperature or processing time
- Cleaners can be built to address complex soil challenges


Choosing the Right Cleaner

Sanitation Process

- 1. Sanitation Prep
- 2. Pre-Rinse
- 3. Wash
 - 1. Concentration
 - 2. Temperature
 - 3. Time
 - 4. Mechanical Force
- 4. Rinse & Inspect
- 5. Remove Water & Assemble
- 6. Pre-Op Inspection & Verification
- 7. Sanitize

FACTORS OF SANITIZERS



FACTORS OF SANITIZERS

Choosing the Right Sanitizer

- Chemistry (type & concentration)
 - Proper sanitizer and concentration for the job
 - Water quality, material compatibility, label claims
- Temperature
 - Necessary for proper performance (within a range)
- Time
 - Allow enough time to perform "kill"
- Coverage
 - Complete coverage of surface areas to reduce micro levels

Coverage! Coverage! Coverage! Coverage! Coverage!

FACTORS OF SANITIZERS

What a Sanitizer Is/Does

- Reduce microbial contamination to a safe level
- Two Types:
 - No rinse food contact surface sanitizer
 - Approved for incidental food contact
 - Must be adequately drained from the surface
 - Non-food contact surface sanitizer
- Usage restrictions:
 - Only prepare in potable water
 - Do not reuse for sanitizing (prepare fresh)
 - Use the accurate concentration (legal)
 - Below = Questionable efficacy
 - Above = Violate regulatory approvals

A Sanitizer

Does Not

Sterilize

&

Disinfect

Does

Reduce contamination to safe level

&

Surface sanitizer kills 5 logs in 30 seconds at 25 C

DIRECTIONS FOR USE:

It is a violation of Federal law to use this product in a manner inconsistent with its labeling.

Tools

- No federal or state regulations for color-coded cleaning tools
- If implementing, training on tool color and exact use is needed
- Example color coding:

White Food Contact Surfaces

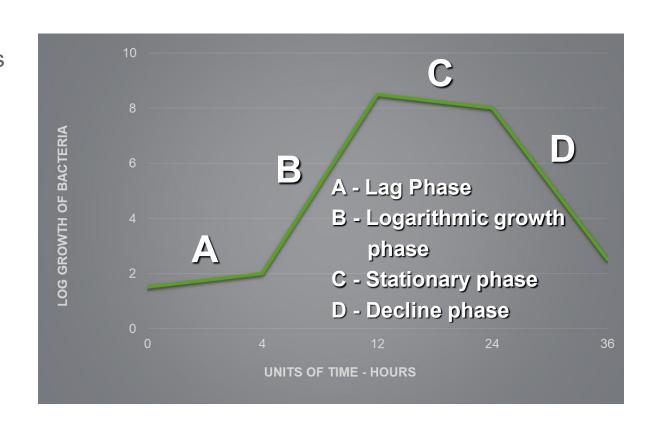
Allergens
Food Contact
Surfaces

Yellow
Non-food Contact
Surfaces

Red Floors

Black Drains

Pre and Post Operational Inspection


- Organoleptic
 - Visual appearance
 - Feel
 - Off odors
- Analytical
 - Microbiology counts
 - ATP
 - Indicator chemistries

Operational Sanitation

- Definition
 - Sanitation conducted during production
 - Intermittent removal of process scrap & debris
- Why it's necessary
 - Employee safety
 - Make sanitation prep step of sanitation process quicker and easer
 - Control bacterial levels during production (maintaining Lag Phase)
- Why it can be problematic
 - Potential for cross-contamination
 - Increases microbial growth factors in the environment (water)

Targeting Environmental Bacteria

- Disinfect Zones 2 3
 - Zone 2: Non-product contact surfaces close to Zone 1
 - Zone 3:Non-product contact surfaces in processing area
- Follow written procedures
 - What is available works if applied correctly
- Use a peroxide based cleaner, disinfectant, or sanitizer
 - PAA boosted caustic cleaner
 - Hydrogen peroxide followed by caustic (CIP)
 - Hydrogen peroxide and quaternary ammonium (PerQuat)
 - PAA

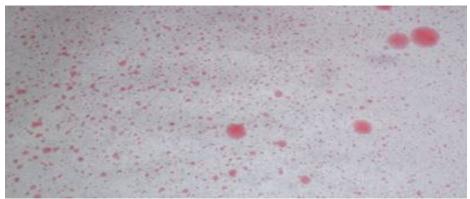
Master Sanitation Schedule

- Tear equipment down enough to allow deep cleaning periodically
- Determine frequency based on visual and swabbing results
- Keep to the schedule in order to prevent opportunities for growth
- Pair teardowns with other preventive maintenance activities
- A Master Sanitation Schedule is an effective tool for addressing hard to clean areas

Preventive Maintenance

- Effective PM programs completed on time are essential to maintain good sanitation
- Sanitation program is designed for normal equipment soils
- Compliance to schedule is important

The best sanitation program is not overdesigned and needs properly maintained equipment


Pump-up Sprayer

- Too low volume for proper coverage
- Don't hold up to rigors of the industry

Recommend: Flood Sanitizing

Central System

- Centralized injection system accurately pre-dilutes chemistry and supplies it to sanitation hose drops throughout the department
- Also available for filling hand dips, and other equipment dips
- Available on demand during production
- Less variability in no rinse concentrations
- Only one system to verify from a documentation standpoint – helps with audit readiness
- Eliminates overages in no rinse sanitizer applications
- Much more effective and efficient than pump-up sprayers, tank or wall units

Central System - Improper nozzles equate to poor coverage and/or no pressure

Zone Barrier

- Spray or foam applications
- Low moisture options
- Many options available
 - Single, stand-alone units with manual timer
 - Programmable units that turn ON/OFF
 - Time based
 - Infrared activations
 - Central systems
- Foam quality is critical
- Replenishing sanitizer is important for effective treatment

Sanitary Design

Sanitary Design

"Sanitary design is the application of design techniques that allow the timely and effective cleaning of the entire manufacturing asset."*

- Good sanitary design can reduce or eliminate the need for Master Sanitation Schedule tasks as a mitigation step.
- Good sanitary design can cut:
 - Cleaning Costs
 - Time
 - Harborage areas

Poor sanitary design, that isn't addressed, can negate the best sanitation programs.

10 Sanitary Design Principles – American Meat Institute (AMI)

- 1. Cleanable
- 2. Made of compatible materials
- 3. Accessible for inspection, maintenance, cleaning, sanitation
- 4. No product or liquid collection
- Hollow areas eliminated or sealed
- 6. No niches
- 7. Sanitary operational performance
- 8. Hygienic design of maintenance enclosures
- 9. Hygienic compatibility with other plant systems
- 10. Validated cleaning & sanitizing protocols

